Als ich für die Recherchen zum Artikel dieser Woche angefangen hatte war ich selber völlig verblüfft. EPAS1 ist ein wirklich faszinierendes Protein. Ich versuche euch also mal der Reihe nach zu erzählen, was es Wissenwertes zu EPAS1 gibt. Nur soviel schon vorweg: es hat mit Tibetern, Sportlern, Sauerstoff und einer längst ausgestorbenen Menschenart zu tun. Das einzig uninteressante an EPAS1 ist der vollständige Name: endothelial PAS domain-containing protein 1. Atemberaubend hingegen war an EPAS1 die Beobachtung, dass Tibeter fast ausschließlich eine bestimmte Variante des Gens tragen, während diese Variante beispielsweise bei Han-Chinesen kaum auftaucht (publiziert 2010 in Science). Tatsächlich ist die Ungleichversteilung dieser beiden Varianten zwischen den beiden Bevölkerungsgruppen, die sich erst vor ein paar tausend Jahren aufgespalten haben, so hoch wie sie noch nie bei irgendeinem menschlichen Gen beobachtet wurde. Welcher Umweltfaktor kann es also sein, der dieses Gen so unglaublich schnell evolvieren hat lassen? Es gibt sehr gute Hinweise darauf, dass es die so außergewöhnliche Seehöhe Tibets ist. Schon Lhasa liegt auf fast 4000m, einer Höhe in der man bei normaler Atmung bereits ein Drittel weniger Sauerstoff aufnimmt als man es am Meer tun würde. Die meisten Tibetreisenden (egal ob Europäer, Amerikaner oder Han-Chinesen) reagieren darauf mit einer ausgewachsenen Höhenkrankheit.

License: CC BY-SA 3.0. Many thanks to Master Uegly

Diese Woche hab ich mich wieder mal für einen Gen-Klassiker entschieden. Allerdings für einen, der gerade erst in einem neuen Zusammenhang beschrieben wurde. Der bereits gut etablierte Zusammenhang dieses Gens mit einer besonderen Form der Leukämie führt uns zunächst zurück in die frühen 1960er Jahre. Denn es war während dieser medizinisch spannenden Jahre, in denen auch beispielsweise die Pille ihren revolutionären Einzug hielt, dass zum ersten Mal ein merkwürdig aussehendes Chromosom in Zusammenhang gebracht wurde mit einer schweren Form der Leukämie, der chronischen Myelose. Nach dem Ort der ersten Entdeckung dieses sonderbaren Chromosoms wurde es Philadelphia-Chromosom genannt. Erst 1973 gelang es Forschern aufzuklären, wie dieses atypische Chromosom zustande kommt: es handelt sich um eine sogenannte Translokation, bei der ein Stück des kurzen Arms von Chromosom 9 mit einem Teil des langen Arms von Chromosom 22 die Plätze tauscht (siehe Bild).

Zunächst eine kurze Auffrischung der Biologie-Schulbildung: wir tragen von jedem Gen zwei Kopien in uns. Mutationen in diesen Genen können eine Erkrankung hervorrufen. Dabei spricht man von einer rezessiven Mutation, wenn von Mutter und Vater eine solche Variante vererbt werden muss, damit im Kind zwei Kopien dieser Mutation aufeinander treffen; erst dann ist das Kind von der Erkrankung betroffen. Bei einer dominanten Variante hingegen reicht es, wenn entweder die Mutter oder der Vater eine solche Kopie vererbt, denn bereits eine einzige Kopie dieser Variante löst die Erkrankung aus. Ein Beispiel für eine verheerende Mutation mit dominanter Erbfolge ist Chorea Huntigton. Diese leider ausnahmslos tödlich verlaufende degenerative Erkrankung wird von einem betroffenen Elternteil mit 50% Wahrscheinlichkeit an das Kind vererbt. Dabei spielt es für den Verlauf der Erkrankung keine Rolle, ob die Variante von der Mutter oder vom Vater vererbt wurde, denn auf den sogenannten Autosomen (das sind alle Chromosomen außer den Geschlechtschromosomen X und Y) sind beide Kopien der DNA-Abschnitte equivalent. Aber sind sie das wirklich? Nein, das sind sie eben nicht! Und weil sie das - entgegen unserer früheren Lehrmeinung - nicht sind, taucht das mit ihrer Unterschiedlichkeit verbundene Thema in den letzten Jahren so häufig in den Medien auf: es geht um Epigenetik.

Über Jahrzenhnte hinweg wurde RNA als bloßer Vermittler der genomischen DNA und der nach dieser Vorlage gebauten Proteine gesehen. Doch schon seit geraumer Zeit ist klar, wie heillos man damit die RNA in ihrer Bedeutung unterschätzt hat. Nicht nur kann durch etliche Mechanismen das Vorhandensein bestimmter RNAs und damit die Rate der entsprechenden Proteine reguliert werden, sondern darüber hinaus wurde festgestellt, dass nur ein geringer Anteil der RNA-Moleküle überhaupt den Bauplan eines Proteins beinhalten. Bis vor einigen Jahren hielt sich auch die Vorstellung, dass etwa 95% unseres Genoms überflüssig seien, weil von diesen Abschnitten eben keine RNA abgeschrieben wird, die für ein Protein codiert. Hartnäckig hielt sich der Begriff junk DNA als Bezeichnung für diese Genomabschnitte, deren Funktion man nicht verstand. Heute wissen wir, dass von mindestens 50% unseres Genoms zu irgendeinem Zeitpunkt RNA-Abschriften angefertigt werden. Nur dienen diese RNAs eben nicht als Vorlage für den Bau von Proteinen. Stattdessen sind es die RNA-Moleküle selbst, die eine spezifische Funktion ausführen. Eine wichtige Gruppe stellen beispielsweise kleine micro RNAs (miRNAs) dar, die anderer (proteincodierende) RNAs in einem Prozess, den man RNA Interferenz nennt, regulieren können. Aber auch das Herzstück (also das tatsächliche katalytische Zentrum) des Ribosoms, der Maschine, die alle unsere Proteine baut, besteht aus RNA (und nicht aus Protein, wie man lange Zeit annahm). Und es gibt noch längere, so genannte long non-coding RNAs, die verschiedene Funtionen ausüben können. Eine der berühmtesten Vertreterinnen ist wohl die XIST-(sprich: EXIST)-RNA, die eine Schlüsselrolle bei der X-Chromosom-Inaktivierung spielt. Und kürzlich hat man eine weitere Mitspielerin bei diesem wichtigen Prozess entdeckt: XACT. Aber warum muss denn dieses X-Chromosom überhaupt inaktiviert werden?

Wir schreiben also das Jahr 2017! Ich hoffe alle Leser- und innen sind gut herüber gerutscht! Während die Anzahl der Rückblicke auf das Jahr 2016 in den Medien langsam wieder nachlässt, dachte ich mir, ich sollte unbedingt noch sowas Ähnliches vom Zaum brechen. Daher hab ich mir für den ersten Artikel im neuen Jahr ein Gen ausgesucht, über das so viel geforscht, entwickelt und publiziert wird, dass man locker einen Rückblick über einige Forschungshighlights des Jahres 2016 dazu schreiben kann: Dystrophin ist in mehrfacher Hinsicht ein außergewöhnliches Gen. Von etlichen Quellen, unter anderem dem amerikanischen National Institute of Health (NIH) wird es mit etwa 2,5 Millionen Basenpaaren als das größte Gen des humanen Genoms angegeben. Außerdem ist es auf einem Geschlechtschromosom (X) codiert, wodurch es auf besondere Weise vererbt wird. Dies führt dazu, dass fast ausschließlich Jungen von den schweren Erkrankungen betroffen sind, die durch Mutationen im  Dystrophin-Gen ausgelöst werden. Die häufigsten dieser Erkrankungen sind die folgenschweren Muskeldystrophien vom Typ Becker und Duchenne.