Als im Jahr 1979 gleich sechs Forschergruppen unabhängig voneinander ein 53 kDa schweres Protein beschrieben, ahnte wohl noch keiner der Beteiligten, zu was für einem genetischen Superstar sich dieses Protein entwickeln wird. Auch wenn es zunächst ganz anders erschien, ist das Protein, welches nach seinem Molekulargewicht auf den unscheinbaren Namen p53 getauft wurde, der vielleicht wichtigste Ordnungshüter in unseren Zellen; allerdings nur, solange es einwandfrei funktioniert. Wenn p53 hingegen seine Funktionsfähigkeit verliert, wird’s gefährlich. Denn kein anderes Gen ist in so vielen Tumorzellen mutiert wie p53. Wie schafft es das normale p53 also, all unsere Körperzellen in Schach zu halten und was hat das alles mit CRISPR zu tun?

So, letzte Woche wurde er also publiziert. Für die Einen der Durch-, für die Anderen der Tabubruch. Forscher und natürlich auch -innen rund um den umstrittenen Stammzellguru Shoukhrat Mitalipov haben eine schwere Erbkrankheit aus menschlichen Embryonen rausgeCRISPRt. CRISPR, das wissen mittlerweile hoffentlich die meisten meiner Leser, ist diese "Genschere", die man so designen kann, dass sie an (fast) jeder beliebigen Stelle des Genoms einen DNA-Doppelstrangbruch erzeugen kann. Wenn man gleichzeitig mit diesem, gegen ein bestimmtes defektes Gen programmierten, CRISPR nun eine "gesunde" Variante dieses Gens in eine Zelle einschleust, hat man eine hohe Chance, dass diese Zelle das krankmachende Gen durch die korrekte Variante austauscht. Und wenn diese Zelle nun eine befruchtete Eizelle ist, dann werden alle Nachkommen dieser Zelle und damit der gesamte Organismus die reparierte Genversion in sich tragen. Mitalipov und seine Leute haben auf genau diese Art und Weise in menschlichen Eizellen eine Mutation im MYBPC3-Gen repariert, die für fast die Hälfte aller Fälle der Hypertrophen Kardiomyopathie verantwortlich ist. Das war der Fachzeitschrift Nature diese Woche ein Artikel mitsamt erheblicher begleitender Berichterstattung wert. Das Problem, das ich dabei habe ist: eine derartige Reparatur ven Erbkrankheiten in menschlichen Embryonen wurde in den vergangenen zwei Jahren bereits dreimal von chinesischen Wissenschaftlern beschrieben aber niemals in einer derartig hochkarätigen Zeitschrift publiziert. Der common sense in der westlichen Forschungsgemeinschaft war, dass man an menschlichen Embryonen erstmal noch nicht rumCRISPRn sollte. Nun macht also Mitalipovs Gruppe, die in Portland in den USA sitzt, genau das, und es wird ein dicker Artikel daraus gemacht.

Nachdem das mediale Auge zunächst noch recht schläfrig wirkte, sind nun endlich die Zeitungen voll davon: auf Initiative der Länder Baden-Württemberg und Bayern hin, lag dem deutschen Bundesrat kürzlich ein Entwurf zu einer weitreichenden Gesetzesänderung vor (Drucksache 117/17). Es geht dabei um die "Erweiterung des Umfangs der Untersuchungen von DNA-fähigem Material". Bisher ist es deutschen Ermittlern gestattet eine DNA-Probe, die am einem Tatort gesichert wurde mit einer Datenbank abzugleichen um eine etwaige unmittelbare Übereinstimmung festzustellen. Notfalls - und nur nach richterlicher Zustimmung - kann die Polizei auch eine größere Personengruppe bitten, ihre DNA zur Verfügung zu stellen um sie auf Identität zur sichergestellten DNA zu überprüfen. Wenn dieses Vorgehen nicht zu einem Treffer führt, dann hört bei einem deutschen Kriminalfall in aller Regel an dieser Stelle die Verwertung der DNA-Spur auf. Ist es aber nicht auch möglich aus der DNA eines unbekannten Menschen auf dessen Herkunft, Statur, Haut-, Haar- oder Augenfarbe zu schließen? Und wenn ja, warum dürfen die deutschen Beamten das bislang nicht tun? Und ist es dann nicht längst überfällig, an dieser Situation etwas zu ändern?

Als ich für die Recherchen zum Artikel dieser Woche angefangen hatte war ich selber völlig verblüfft. EPAS1 ist ein wirklich faszinierendes Protein. Ich versuche euch also mal der Reihe nach zu erzählen, was es Wissenwertes zu EPAS1 gibt. Nur soviel schon vorweg: es hat mit Tibetern, Sportlern, Sauerstoff und einer längst ausgestorbenen Menschenart zu tun. Das einzig uninteressante an EPAS1 ist der vollständige Name: endothelial PAS domain-containing protein 1. Atemberaubend hingegen war an EPAS1 die Beobachtung, dass Tibeter fast ausschließlich eine bestimmte Variante des Gens tragen, während diese Variante beispielsweise bei Han-Chinesen kaum auftaucht (publiziert 2010 in Science). Tatsächlich ist die Ungleichversteilung dieser beiden Varianten zwischen den beiden Bevölkerungsgruppen, die sich erst vor ein paar tausend Jahren aufgespalten haben, so hoch wie sie noch nie bei irgendeinem menschlichen Gen beobachtet wurde. Welcher Umweltfaktor kann es also sein, der dieses Gen so unglaublich schnell evolvieren hat lassen? Es gibt sehr gute Hinweise darauf, dass es die so außergewöhnliche Seehöhe Tibets ist. Schon Lhasa liegt auf fast 4000m, einer Höhe in der man bei normaler Atmung bereits ein Drittel weniger Sauerstoff aufnimmt als man es am Meer tun würde. Die meisten Tibetreisenden (egal ob Europäer, Amerikaner oder Han-Chinesen) reagieren darauf mit einer ausgewachsenen Höhenkrankheit.

License: CC BY-SA 3.0. Many thanks to Master Uegly

Diese Woche hab ich mich wieder mal für einen Gen-Klassiker entschieden. Allerdings für einen, der gerade erst in einem neuen Zusammenhang beschrieben wurde. Der bereits gut etablierte Zusammenhang dieses Gens mit einer besonderen Form der Leukämie führt uns zunächst zurück in die frühen 1960er Jahre. Denn es war während dieser medizinisch spannenden Jahre, in denen auch beispielsweise die Pille ihren revolutionären Einzug hielt, dass zum ersten Mal ein merkwürdig aussehendes Chromosom in Zusammenhang gebracht wurde mit einer schweren Form der Leukämie, der chronischen Myelose. Nach dem Ort der ersten Entdeckung dieses sonderbaren Chromosoms wurde es Philadelphia-Chromosom genannt. Erst 1973 gelang es Forschern aufzuklären, wie dieses atypische Chromosom zustande kommt: es handelt sich um eine sogenannte Translokation, bei der ein Stück des kurzen Arms von Chromosom 9 mit einem Teil des langen Arms von Chromosom 22 die Plätze tauscht (siehe Bild).

feed-image Gen der Woche